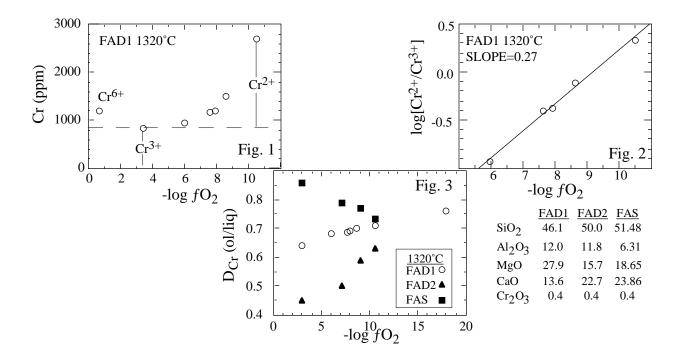
THE EFFECT OF Fe ON Cr REDOX STATE IN SPINEL-SATURATED BASALTS: B. Hanson and J. H. Jones, SN-4, NASA, JSC, Houston, TX 77058.

Cr is thought to exist primarily as Cr3+ in basalts that crystallize under terrestrial redox conditions (QFM), and as Cr²⁺ under lunar conditions (IW-1). The different partitioning behavior of Cr2+ and Cr3+ in basalts is thought to be reflected in the generally higher Cr-content of lunar magmas in comparison to their terrestrial counterparts [e.g., 1]. The partitioning behavior of Cr in basaltic systems is, however, poorly understood. For example, [2] found that D_{Cr} (ol/liq) varied by a factor of 4 with T, fO₂, and liquid composition in Fe-free haplobasaltic systems. The change in D_{Cr} (ol/liq) was attributed to Cr changing valence state from Cr^{2+} to Cr^{3+} . In contrast, values for D_{Cr} (ol/liq) were found to be identical regardless of fO2 in experiments performed in Febearing systems [3,4]. The lack of variation of D_{Cr} (ol/liq) in the Fe-bearing systems led us to question whether Cr²⁺ exists in the presence of Fe³⁺ [e.g., 2,5]. We have performed a series of 1-atm experiments over large ranges of fO_2 designed to (1) evaluate the effect of Fe³⁺ on Cr redox state and (2) determine D_{Cr} (ol/liq) for both Cr2+ and Cr3

Experimental Methods: Samples were hung in the hotspots of 1-atm furnaces on Pt loops. fO_2 was controlled by $CO-CO_2$ mixtures and monitored by a ZrO_2 oxygen sensor. Cr-loss to Pt at intermediate fO_2 (~QFM-IW) was minimized by performing multiple experiments on each loop in order to saturate the Pt loops with Cr. Volatile Cr-loss at high fO_2 (air) was minimized by running experiments in $Pt_{95}Au_5$ tubes open to atmosphere by a pin hole. Other samples were placed in graphite crucibles and sealed under vacuum in silica tubes, and suspended in 1-atm furnaces. Cr° was present in the graphite-capsule charges, and fO_2 is estimated to be less than 10^{-18} .

Results and Discussion: Fig. 1 shows the Cr content of the glass as a function of fO₂ for a set of experiments run on a composition in the Fe-free system FAD at 1320°C. All charges contained olivine and spinel. The Cr-content of the glass systematically decreases as the system is oxidized, reaching a minimum at an fO_2 of 10^{-3} . The Cr-content then begins to increase at higher fO2. This behavior can be explained by a simple model. This increase in Cr has primarily been attributed to the increase in Cr^{2+} as the system is reduced [e.g., 6–8]. Because Cr³⁺ is an essential structural constituent of spinel, the Cr³⁺ content of the liquid is "buffered" by spinel. The addition of more Cr³⁺ to the system results in spinel crystallization until the Cr³⁺ saturation abundance (CSA) is reached [8]. The CSA is independent of fO2. This must be true because the spinel compositions do not change with fO_2 . The increase in Cr as the system is reduced reflects the increasing Cr²⁺/Cr³⁺ in the liquid, which is externally buffered. The increase of Cr in the liquid as the system is oxidized is the result of the increasing abundance of Cr^{6+} . At $fO_2 = 10-3$, where the Cr-content of the liquid is minimum, all of the Cr is trivalent, and thus represents the CSA. Using this model, the Cr²⁺ abundance be calculated for each experiment by simply subtracting the CSA from the total Cr. Log[Cr²⁺/Cr³⁺], calculated from the data in Fig. 1, has been plotted vs. log fO2 in Fig. 2. The data form a line with a slope of 0.27, in agreement with the theoretically-predicted value of 0.25 for ideal reactions involving one electron [2].


We have applied the same logic to Fe-bearing systems to qualitatively evaluate the effect of Fe on Cr^{2+} / Cr^{3+} in spinel-

saturated liquids using the high-Cr data from [8]. The Cr-content Fe-bearing spinel-saturated liquids also decreases systematically with increasing fO2 and that Cr in the liquid is buffered by spinel. Although spinel compositions do change with fO₂ in Fe-bearing systems, they remain surprisingly constant between IW and NNO [e.g., 6], then change very rapidly at higher fO_2 . Thus, the Cr^{3+} content of the glass in the fO_2 -interval between IW and NNO should remain essentially constant. We are therefore constrained to assume that all Cr is trivalent at NNO because it is as far as we can deviate from IW without large changes in spinel composition. When $\log[Cr^{2+}/Cr^{3+}]$ is plotted vs. $-\log fO_2$, the data form a line with a slope that is very close to the theoretically-predicted value of 0.25. If all of the Cr in the liquid at NNO were not Cr³⁺ at NNO, as we have assumed, the slope of the would be shallower owing to an over-estimation of the Cr³⁺ abundance. If the presence of Fe³⁺ changed Cr²⁺/Cr³⁺ by inhibiting Cr²⁺, a shallower slope is predicted. The slope of approximately 0.25 suggests that the presence of Fe³⁺ does not preclude the presence of Cr^{2+} . It appears that Fe^{3+} suppresses Cr^{2+} so that it first appears $\sim 3 \log \text{ units of } fO_2 \text{ less than in the Fe-free system.}$

The constancy in D_{Cr} in the Fe-bearing systems is simply due to similar values of D_{Cr}^{2+} and D_{Cr}^{3+} . Figure 3 shows $D_{Cr}(\text{ol/liq})$ vs $\log f O_2$ for experiments spanning over 18 log units of fO_2 (FAD1). Since Cr° exists in the sealed-tube charges, it can reasonably be assumed that all of the Cr is Cr^{2+} , so D_{Cr}^{2+} can be measured. Similarly, D_{Cr}^{3+} is measured in the sample where all Cr is Cr^{3+} (i.e. $\log f O_2 = 10^{-3}$; Fig. 1). Also plotted in Fig. 3 are the values for Cr from experiments performed on two very different Fe-free compositions. Note that D_{Cr}^{2+} and DCr3+ are very similar in FAD1. D_{Cr} varies more with fO_2 in FAD2 and FAS, but all converge on a value of 0.6 ± 0.1 at low fO_2 . Clearly D_{Cr}^{-3+} varies more with liquid composition than does D_{Cr}^{-2+} and, for some compositions, the two may be the same. In this latter situation, D_{Cr} will not vary with fO_2 .

Our results bear on Cr^{2+} partitioning into spinel grown from basaltic liquids. It is thought that Cr^{2+} can not partition significantly into spinel because it cannot compete for sites with other divalent cations [9]. We propose that Cr^{2+} may be as compatible in Cr-spinel as Mg or Fe (i.e., D_{Cr}^{2+} (sp/liq) = 1-2), but the Cr^{2+} content of spinel is simply too low to measure accurately. For example, we calculate 1800 ppm Cr^{2+} in the FAD1 liquid at IW (Fig. 1). Cr^{2+} would contribute 0.18-0.32 wt.% Cr to a spinel containing >22 wt.% Cr, assuming a D_{Cr}^{2+} (sp/liq) of 1-2. It would be difficult to resolve this small amount of Cr^{2+} in spinel based on stoichiometry given analytical constraints. The problem becomes worse in Fe-bearing spinels in light of the assumptions regarding spinel stoichiometry and Fe^{2+}/Fe^{3+} that must be made. **References:** [1] Taylor, S.R. (1975) Lunar Science:A post-

References: [1] Taylor, S.R. (1975) Lunar Science:A post-Apollo View. Pergamon, Elmsford, N.Y., 372pp. [2] Schreiber, H.D. and Haskin, L. A. (1976) PLPSC 7, p. 1221-1259. [3] Mikouchi et al. (1994) LPSC XXV, p. 907-908. [4] Gaetani, G.A and Grove, T.L (1996), in press. [5] Lauer, H.V. and Morris, R.V. (1976) J. Amer. Ceram. Soc. 60, pp. 443-451. [6] Murk, B.W. and Campbell, I.H. (1986) GCA, 50, pp. 1871-1887 [7] Maurel, C. and Maurel, P (1984) Bull. Mineral. 105, pp. 640-647. [8] Hanson, B. and Delano, J.W. (1992) LPSC XXIII, pp. 481-482. [9] Mao, H.K. and Bell, P.M. (1975) GCA 39, pp. 865-874.

